阅读提示:为防止内容获取不全,请勿使用浏览器阅读模式。
分开排列)
这种组合,犹如数字游戏组合而可循的规律,但古人不能理解,就以为是神奇的东西,就逐步给赋予上神秘的色彩。
若以每组体的“+”与“∧”来组合不相同的符号,必然会组合出32个不相同的体”符号。
若把不相同的十六个“四联体”符号,再分别加进去“+”与“∧”,即有“四联体”组合变成体”组合,就组合出三十二个不相同的体”符号来:
(第一组8个体“符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
十十十十十十十十
十十十十十十十十
(第二组8个体“画符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
∧∧∧∧∧∧∧∧
十十十十十十十十
(第三组8个体”画符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
十十十十十十十十
∧∧∧∧∧∧∧∧
(第四组8个体”符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
∧∧∧∧∧∧∧∧
∧∧∧∧∧∧∧∧
(说明:因版面有限,分四组排列32个体”符号)
若把三十二个不相同的体”符号,再分别加进去“+”与“∧”这两个基础符号,即有体”组合变成“六联体”组合,就必然组合出六十四个不相同的“六联体”符号来。
见下组合:
(第一组8个“六联体“符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
十十十十十十十十
十十十十十十十十
十十十十十十十十
(第二组8个“六联体“符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
∧∧∧∧∧∧∧∧
十十十十十十十十
十十十十十十十十
(第三组8个“六联体”符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
十十十十十十十十
∧∧∧∧∧∧∧∧
十十十十十十十十
(第四组8个“六联体”符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
∧∧∧∧∧∧∧∧
∧∧∧∧∧∧∧∧
十十十十十十十十
(8个“六联体“符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
十十十十十十十十
十十十十十十十十
∧∧∧∧∧∧∧∧
(第六组8个“六联体“符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
∧∧∧∧∧∧∧∧
十十十十十十十十
∧∧∧∧∧∧∧∧
(第七组8个“六联体”符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
十十十十十十十十
∧∧∧∧∧∧∧∧
∧∧∧∧∧∧∧∧
(第8组8个“六联体”符号)
十十十∧∧∧十∧
本章未完,请点击下一页继续阅读》》